Controller Design for non-linear Descriptor Systems using Particle Swarm Optimization
نویسندگان
چکیده
This paper proposes a control strategy for descriptor non-polynomial systems using particle swarm optimization(PSO). Basic idea of our approach is to extend the existing approaches for estimating the domain of attraction(DOA) of the non-polynomial systems to synthesis of stabilizing control. To do this we derive the stability conditions for estimating the DOA with input magnitude constraints. From these conditions stabilizing controller is obtained by PSO. The proposed strategy can be easily exploited to search for both the stability controller and optimal estimates. Usefulness and validity are demonstrated by numerical simulations.
منابع مشابه
AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملLoad Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملDesign of a New IPFC-Based Damping Neurocontrol for Enhancing Stability of a Power System Using Particle Swarm Optimization
The interline power flow controller (IPFC) is a concept of the FACTS controller for series compensation which can inject a voltage with controllable magnitude and phase angle among multi lines. This paper proposes a novel IPFC-Based Damping Neuro-control scheme using PSO for damping oscillations in a power system to improve power system stability. The addition of a supplementary controll...
متن کاملRobust Control of Power System Stabilizer Using World Cup Optimization Algorithm
In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Control and Intelligent Systems
دوره 43 شماره
صفحات -
تاریخ انتشار 2015